Active phase separation in mixtures of chemically interacting particles

Jaime Agudo-Canalejo^{1,2,3} and Ramin Golestanian^{1,2}

¹Department of Living Matter Physics, MPI for Dynamics and Self-Organization ²Rudolf Peierls Centre for Theoretical Physics, University of Oxford ³Department of Chemistry, The Pennsylvania State University

Chemically interacting particles: ??? microorganisms, catalytic colloids, enzymes. mobility activity

will such a mixture remain homogeneous?

Detour:

Chemotaxis of catalytic enzymes in the presence of their substrate

Experimental Observations of Enzyme Chemotaxis

Typically towards the substrate, occasionally away from it

Experimental Observations of Enzyme Chemotaxis

- Yu et al. JACS, 131(16), 5722–5723 (2009)
 RNA polymerase: Chemotaxis
- Sengupta et al. JACS 135(4), 1406–1414 (2013)
 Catalase, <u>urease</u>: Chemotaxis
- Sengupta et al. ACS Nano, 8(3), 2410–2418 (2014)
 DNA polymerase: Chemotaxis
- Zhao et al. Nat. Chem, 10, 311–317 (2018)
 Hexokinase, aldolase: Chemotaxis
- Jee et al. PNAS, 139(44), 15588–15591 (2018)
 <u>Urease</u>, acetylcholinesterase: Antichemotaxis (!)

Conflicting observations for urease!

What is the mechanism of enzyme chemotaxis?

- Active mechanisms (self-phoresis, stochastic swimming...) depending on the catalytic step seem to be too weak to explain observations
 [Golestanian, R. (2015). Phys. Rev. Lett., 115(10), 108102.]
- Could passive mechanisms (just bindingunbinding) explain the observations?

- Interactions between enzyme and substrate:
 - Binding to form a complex
 - Non-contact (electrostatic, van der Waals, etc.)
 - Hydrodynamic

Starting from the full Fokker-Planck equation for the (N+1)-particle probability distribution, integrating out the substrate we obtain:
 ∂_tc_e(**R**;t) = ∇_{**R**} · [D_e∇_{**R**}c_e - v_e(**R**)c_e] - k_{on}c_ec_s + k_{off}c_c
 ∂_tc_c(**R**;t) = ∇_{**R**} · [D_c∇_{**R**}c_c - v_e(**R**)c_c] + k_{on}c_ec_s - k_{off}c_c
 ∴ ↑ ↑ ↑ ↑
 diffusion phoresis binding unbinding

$$\partial_t c_{\rm e}(\boldsymbol{R};t) = \nabla_{\boldsymbol{R}} \cdot [D_{\rm e} \nabla_{\boldsymbol{R}} c_{\rm e} - \boldsymbol{v}_{\rm e}(\boldsymbol{R}) c_{\rm e}] - k_{\rm on} c_{\rm e} c_{\rm s} + k_{\rm off} c_{\rm c}$$
$$\partial_t c_{\rm c}(\boldsymbol{R};t) = \nabla_{\boldsymbol{R}} \cdot [D_{\rm c} \nabla_{\boldsymbol{R}} c_{\rm c} - \boldsymbol{v}_{\rm c}(\boldsymbol{R}) c_{\rm c}] + k_{\rm on} c_{\rm e} c_{\rm s} - k_{\rm off} c_{\rm c}$$

Diffusion coefficients of free enzyme and complex different in general $D_e \neq D_c$ (conformational changes!)

Phoresis due to non-contact interactions with substrate:

$$\boldsymbol{v}_{\mathbf{e}}(\boldsymbol{R}) \approx \frac{k_{\mathrm{B}}T}{\eta} \left[\int_{0}^{\infty} \mathrm{d}hh \left(\mathrm{e}^{-\phi^{\mathrm{es}}(h)/k_{\mathrm{B}}T} - 1 \right) \right] \nabla_{\boldsymbol{R}}c_{\mathrm{s}} \equiv \frac{k_{\mathrm{B}}T}{\eta} \lambda_{\mathrm{e}}^{2} \nabla_{\boldsymbol{R}}c_{\mathrm{s}}$$
$$\boldsymbol{v}_{\mathbf{c}}(\boldsymbol{R}) \approx \frac{k_{\mathrm{B}}T}{\eta} \left[\int_{0}^{\infty} \mathrm{d}hh \left(\mathrm{e}^{-\phi^{\mathrm{es}}(h)/k_{\mathrm{B}}T} - 1 \right) \right] \nabla_{\boldsymbol{R}}c_{\mathrm{s}} \equiv \frac{k_{\mathrm{B}}T}{\eta} \lambda_{\mathrm{c}}^{2} \nabla_{\boldsymbol{R}}c_{\mathrm{s}}$$

Derjaguin lengths of free enzyme and complex different in general $\lambda_e \neq \lambda_c$

Experiments with fluorescently-labelled enzymes measure the total enzyme concentration

$$c_{\mathrm{e}}^{\mathrm{tot}}(\boldsymbol{R};t) = c_{\mathrm{e}}(\boldsymbol{R};t) + c_{\mathrm{c}}(\boldsymbol{R};t)$$

Binding-unbinding much faster than diffusion; we have instantaneous local binding equilibrium

 $k_{\rm on}c_{\rm e}(\boldsymbol{R};t)c_{\rm s}(\boldsymbol{R};t) \approx k_{\rm off}c_{\rm c}(\boldsymbol{R};t)$

Diffusion and Chemotaxis of an Enzyme

We finally obtain:

$$\partial_t c_{\rm e}^{\rm tot}(\boldsymbol{R};t) = \nabla_{\boldsymbol{R}} \cdot \left\{ D(\boldsymbol{R}) \cdot \nabla_{\boldsymbol{R}} c_{\rm e}^{\rm tot} - [\boldsymbol{V}_{\rm ph}(\boldsymbol{R}) + \boldsymbol{V}_{\rm bi}(\boldsymbol{R})] c_{\rm e}^{\rm tot} \right\}$$

Substrate-dependent diffusion coefficient

$$D(\boldsymbol{R}) = D_{\rm e} + (D_{\rm c} - D_{\rm e}) \frac{c_{\rm s}(\boldsymbol{R})}{K + c_{\rm s}(\boldsymbol{R})}$$

With Michaelis-Menten style dependence...

Substrate-dependent phoretic velocity

$$\boldsymbol{V}_{\mathrm{ph}}(\boldsymbol{R}) = \boldsymbol{v}_{\mathbf{e}}(\boldsymbol{R}) + [\boldsymbol{v}_{\mathbf{c}}(\boldsymbol{R}) - \boldsymbol{v}_{\mathbf{e}}(\boldsymbol{R})] \frac{c_{\mathrm{s}}(\boldsymbol{R})}{K + c_{\mathrm{s}}(\boldsymbol{R})}$$

New binding-induced contribution to chemotaxis

$$\boldsymbol{V}_{\mathrm{bi}}(\boldsymbol{R}) = -(D_{\mathrm{c}} - D_{\mathrm{e}})\nabla_{\boldsymbol{R}} \left(\frac{c_{\mathrm{s}}(\boldsymbol{R})}{K + c_{\mathrm{s}}(\boldsymbol{R})}\right)$$

Aside: Enhanced Diffusion

It has been observed experimentally that most enzymes exhibit enhanced diffusion in the presence of their substrate

$$D(\boldsymbol{R}) = D_{\rm e} + (D_{\rm c} - D_{\rm e}) \frac{c_{\rm s}(\boldsymbol{R})}{K + c_{\rm s}(\boldsymbol{R})}$$

with $D_{
m c} > D_{
m e}$

associated to binding-induced changes in the average shape and shape fluctuation spectrum of enzymes

P. Illien et al., Nano Lett. 17(7), 4415-4420. (2017)

P. Illien, T. Adeleke-Larodo, and R. Golestanian, EPL 119, 40002. (2017)

J.A-C., T. Adeleke-Larodo, P. Illien, & R. Golestanian, Acc. Chem. Res. 51, 2365. (2018)

Relating Enhanced Diffusion and Chemotaxis

Binding-induced contribution to chemotaxis can be rewritten as

$$\boldsymbol{V}_{\mathrm{bi}}(\boldsymbol{R}) = -(D_{\mathrm{c}} - D_{\mathrm{e}})\nabla_{\boldsymbol{R}}\left(\frac{c_{\mathrm{s}}(\boldsymbol{R})}{K + c_{\mathrm{s}}(\boldsymbol{R})}\right) = -\nabla_{\boldsymbol{R}}D(\boldsymbol{R})$$

If enhanced diffusion $D_c > D_e \Rightarrow V_{bi}$ points away from substrate

If hindered diffusion $D_{\rm c} < D_{\rm e} \Rightarrow V_{\rm bi}$ points towards substrate

However, there is also the phoretic contribution...

Competition between Enhanced Diffusion and Phoresis

Two distinct chemotactic mechanisms:

1. Phoresis due to non-contact interactions

$$\boldsymbol{V}_{\mathrm{ph}} pprox rac{k_{\mathrm{B}}T}{\eta} \lambda_{\mathrm{e}}^2 \nabla_{\boldsymbol{R}} c_{\mathrm{s}} \quad (\lambda_{\mathrm{c}} pprox \lambda_{\mathrm{e}})$$

Typically towards substrate because interactions are predominantly attractive

2. Binding-induced changes in diffusion

$$\boldsymbol{V}_{\mathrm{bi}} = -(D_{\mathrm{c}} - D_{\mathrm{e}}) \nabla_{\boldsymbol{R}} \left(\frac{c_{\mathrm{s}}(\boldsymbol{R})}{K + c_{\mathrm{s}}(\boldsymbol{R})} \right)$$

Typically away from substrate because enzymes display enhanced diffusion

Therefore there is a critical substrate concentration C_s^*

 $c_{s} < c_{s}^{*} \Rightarrow$ Enhanced diffusion dominates $c_{s} > c_{s}^{*} \Rightarrow$ Phoresis dominates

Making Sense of <u>Urease</u> Chemotaxis

Sengupta at al., JACS (2013): Chemotaxis $c_{\rm s} = 1 \,{\rm M}$ **Dominated by phoresis?**

Critical concentration:

Jee et al., PNAS (2018): Antichemotaxis $c_{\rm s} = 1 \, {\rm mM}$ Dominated by enhanced diff.?

All parameters are known from experiment except for the Derjaguin length λ_{e} $[\alpha \equiv (D_{\rm c} - D_{\rm e})/D_{\rm e}]$ (K = 3 mM, α = 0.3, $R_{\rm e}$ = 7 nm)

The two experiments will be dominated by the two different mechanisms if: $1 \text{ M} > c_{\text{s}}^* > 1 \text{ mM} \Leftrightarrow | 0.04 \text{ Å} < \lambda_{\text{e}} < 8 \text{ Å}|$

...which is within the expected range of values

Beyond Enzymes: Designing Directed Nanovehicles

• Exploiting the competition between mechanisms:

Enhanced Diffusion + Attractive Phoresis: 'repelled' from regions with $c_s = c_s^*$

Inhibited Diffusion + Repulsive Phoresis: 'attracted' to regions with $c_s = c_s^*$

 $c \rightarrow c_s = c_s^*$

Summary I:

- Enzymes undergo chemotaxis in the presence of gradients of their substrate
- At least two different mechanisms contribute to chemotaxis
- Competition between phoresis and binding-induced changes in diffusion can **explain conflicting observations** for urease
- Competition between mechanisms can be exploited to engineer nanovehicles with **finely-tuned directed motion**

[Agudo-Canalejo, J., Illien, P., & Golestanian, R. (2018). Phoresis and Enhanced Diffusion Compete in Enzyme Chemotaxis. *Nano Letters*, *18*(4), 2711–2717.]

Back on track:

Active phase separation in mixtures of chemically interacting particles

Chemically-interacting particles: microorganisms, catalytic colloids, enzymes...

- *i* = 1, ..., *M* different particle species
 - α_i chemical activity
 positive if emits solute
 negative if consumes solute
 - μ_i chemotactic mobility - positive if repelled from solute
 - negative if attracted to solute

will such a mixture remain homogeneous?

Chemical interactions are generally non-reciprocal

• Concentration of chemical around a single particle: $c(r) = c_0 + \alpha/(4\pi Dr)$

- Velocity response to gradient: $\mathbf{V} = -\mu \nabla c$
- Velocity of particle *j* in the presence of particle $i: V_{ij} \propto \alpha_i \mu_j r_{ij} / |r_{ij}|^3$ Velocity of *i* in the presence of $j: V_{ji} \propto -\alpha_j \mu_i r_{ij} / |r_{ij}|^3$
- Generally $V_{ij} \neq -V_{ji}$ because $\alpha_i \mu_j \neq \alpha_j \mu_i$ \Rightarrow non-reciprocal interactions!
- Action≠reaction, signature of non-equilibrium activity

Continuum theory for chemically-interacting mixtures

• Concentration field of particles of species i = 1, ..., M:

 $\partial_t \rho_i(\boldsymbol{r}, t) - \nabla \cdot [D_p \nabla \rho_i + (\mu_i \nabla c) \rho_i] = 0$

- Concentration field of chemical: $\partial_t c(\mathbf{r}, t) - D\nabla^2 c = \sum_i \alpha_i \rho_i$
- Deviation from homogeneous solution: $\rho_i(\boldsymbol{r},t) = \rho_{0i} + \delta \rho_i(\boldsymbol{r},t)$ $c(\boldsymbol{r},t) = c_0 + At + \delta c(\boldsymbol{r},t) \quad \text{with} \quad A \equiv \sum_i \alpha_i \rho_{0i}$

Equation for chemical can be rewritten as:

$$\partial_t \delta c(\mathbf{r}, t) - D\nabla^2 \delta c = \sum_i \alpha_i \delta \rho_i$$

• Fast-diffusing chemical \rightarrow instantaneous steady state $D\nabla^2 \delta c = -\sum_i \alpha_i \delta \rho_i$

Continuum theory for chemically-interacting mixtures

• Concentration field of particles of species *i* to **linear order**:

$$\partial_t \delta \rho_i(\boldsymbol{r}, t) = D_{\rm p} \nabla^2 \delta \rho_i - \frac{\mu_i \rho_{0i}}{D} \sum_j \alpha_j \delta \rho_j$$

- *M* coupled equations $\rightarrow M \times M$ eigenvalue problem in Fourier space
- We find M 1 identical eigenvalues which are always negative $\lambda_{-} = -D_{p}q^{2} \rightarrow \text{corresponding modes are always stable}$
- ... and one eigenvalue which can become positive

 $\lambda_{+} = -D_{p}\boldsymbol{q}^{2} - \sum_{i} \mu_{i} \alpha_{i} \rho_{0i} / D \rightarrow \text{corresponding mode}$ can become unstable!

Continuum theory: macroscopic instability

$$\lambda_{+} = -D_{p}q^{2} - \sum_{i} \mu_{i}\alpha_{i}\rho_{0i}/D$$
• Instability occurs whenever
$$\sum_{i} \mu_{i}\alpha_{i}\rho_{0i} < 0$$
• The modes with $q^{2} < -\frac{\sum_{i} \mu_{i}\alpha_{i}\rho_{0i}}{DD_{p}}$ are unstable

- Macroscopic phase separation with *q* = 0 as the first and most unstable mode
- The corresponding eigenvectors can be calculated as

$$(\delta\rho_1, \delta\rho_2, ..., \delta\rho_M) = \left(1, \frac{\mu_2\rho_{02}}{\mu_1\rho_{01}}, ..., \frac{\mu_M\rho_{0M}}{\mu_1\rho_{01}}\right)\delta\rho_1$$

and tell us about the stoichiometry at the onset of the instability

Continuum theory: single species

• Instability occurs whenever

$$\mu \alpha < 0$$

- Stoichiometry is trivial
- This is the Keller-Segel instability (1970):
 If effective interactions are attractive, aggregation instability
 If effective interactions are repulsive, no instability
- Boring...
- However, phenomenology explodes when we add a second species!

Continuum theory: binary mixtures

• For mixtures of only two species we have

$$\mu_1 \alpha_1 \rho_{01} + \mu_2 \alpha_2 \rho_{02} < 0$$
 and $\delta \rho_2 = \frac{\mu_2 \rho_{02}}{\mu_1 \rho_{01}} \delta \rho_1$

 \rightarrow aggregation if the two mobilities have same sign \rightarrow separation if the two mobilities have opposite sign

- Two qualitatively different cases depending on the sign of the activities:
 - 1. If $(\alpha_1, \alpha_2) = (+, -)$, i.e. producer + consumer then instability when $\mu_2 |\alpha_2| \rho_{02} > \mu_1 |\alpha_1| \rho_{01}$
 - 2. If $(\alpha_1, \alpha_2) = (+, +)$, i.e. two producers then instability when $\mu_2 |\alpha_2| \rho_{02} > -\mu_1 |\alpha_1| \rho_{01}$ [the case of two consumers $(\alpha_1, \alpha_2) = (-, -)$ is equivalent under the transformation $\mu_i \rightarrow -\mu_i$]

Simulations of chemically-interacting mixtures

- Far-field approximation → superimpose the solute concentration fields generated by each colloid → pair-wise additive velocities
- Overdamped limit → **Brownian dynamics simulation**

$$\frac{d\mathbf{r}_{i}}{dt} = V_{0} \sum_{k \neq i} \widetilde{\alpha}_{k} \widetilde{\mu}_{i} \frac{\sigma^{2} \mathbf{r}_{ki}}{|\mathbf{r}_{ki}|^{3}} + \sum_{k \neq i} \mathbf{U}_{ik} + \boldsymbol{\xi}_{i}(t)$$
white noise of intensity $2D_{c}$
hard-sphere repulsion
Velocity scale $V_{0} = \frac{\alpha_{0}\mu_{0}}{24\pi D}$ Noise $\widetilde{D}_{c} = D_{c}/V_{0}\sigma$
Activity $\widetilde{\alpha} = \alpha/\alpha_{0}$ Mobility $\widetilde{\mu} = \mu/\mu_{0}$

[Soto, R., & Golestanian, R. Phys. Rev. Lett 112, 068301 (2014), Phys. Rev. E 91, 052304 (2015)]

Simulations of chemically-interacting mixtures

- Cubic 3D box with periodic boundary conditions:
 - Either $N_{\text{tot}} = 1000$ and $L/\sigma = 48 \rightarrow \text{Volume fraction } 0.0047$
 - Or $N_{\text{tot}} = 4000$ and $L/\sigma = 76 \rightarrow \text{Volume fraction } 0.0048$
- Noise $\widetilde{D}_c = 0.01$
- Time step $\delta t = 0.001 \sigma / V_0$
- Run time between $5 \cdot 10^4$ and $8 \cdot 10^5$ steps

Phase diagram for mixtures of producer + consumer

Phase diagram for mixtures of two producers

homogeneous state with active molecule formation

homogeneous state with active molecule formation

$$\tilde{\alpha} = (1, -1)$$

 $\tilde{\mu} = (1, 1/2)$
 $N = (500, 500)$

In this case, formation of self-propelled dimers

3D realisation of the 2D active molecules explored in [Soto, R., & Golestanian, R. Phys. Rev. Lett 112, 068301 (2014), Phys. Rev. E 91, 052304 (2015)]

aggregation into cluster with defined stoichiometry

aggregation into cluster with defined stoichiometry

$$\tilde{\alpha} = (1, -1/2)$$

 $\tilde{\mu} = (1, 6)$
 $N = (500, 500)$

aggregation into cluster with defined stoichiometry

• The initial stoichiometry of the simulations is well captured by the continuum theory prediction

$$\delta\rho_2 = \frac{\mu_2\rho_{02}}{\mu_1\rho_{01}}\delta\rho_1$$

(for a binary mixture)

Initial stoichiometry depends only on mobility, independent of activity

200

100

300

400

aggregation into cluster with defined stoichiometry

The final stoichiometry of the cluster is determined by: 1. All particles of the self-attractive type are in the cluster

2. Particles of the self-repelling type are added until neutrality is
reached
$$\alpha_1 N_1^{\text{clu}} + \alpha_2 N_2^{\text{clu}} = 0$$

 $\tilde{\alpha}_2 = -3$
 $\tilde{\alpha}_2 = -2$
Final stoichiometry
depends only on activity,

independent of mobility

V

Metabolon formation: all product of one enzyme is channeled in the exact amount as substrate to the next enzyme

 $\tilde{\alpha}_2 = -1$

$$N_2^{\rm clu} = N_2$$

aggregation into cluster with defined stoichiometry \rightarrow shape-instability towards self-propelled state

$$\tilde{\alpha} = (1, -1)$$

 $\tilde{\mu} = (1, 8)$
 $N = (800, 200)$

Bistability between static and self-propelled

Self-propelled states typically observed when $|\alpha_2|\mu_2 \gg |\alpha_1|\mu_1$

- aggregation into cluster with defined stoichiometry \rightarrow shape-instability towards self-propelled state
 - $\tilde{\alpha} = (1, -2)$ $\tilde{\mu} = (1,3)$ N = (2000,2000)

Morphogenesis and collective migration: small changes in a subpopulation can trigger collective self-propulsion

separation into two collapsed clusters

Producer+consumer: separation into two collapsed clusters

$$\tilde{\alpha} = (1, -1)$$

 $\tilde{\mu} = (-1, 2)$
 $N = (2000, 2000)$

homogeneous state without molecule formation

homogeneous state without molecule formation

$$\tilde{\alpha} = (1,1)$$

 $\tilde{\mu} = (1,1/2)$
 $N = (500,500)$

aggregation into a collapsed cluster

Two producers: aggregation into a collapsed cluster

$$\tilde{\alpha} = (1,1)$$

 $\tilde{\mu} = (-1,-2)$
 $N = (2000,2000)$

separation into cluster and repelled dilute phase

Two producers: separation into cluster and repelled dilute phase

$$\tilde{\alpha} = (1,1)$$

 $\tilde{\mu} = (1,-2)$
 $N = (500,500)$

Beyond binary mixtures:

phase separation triggered by active "doping agent"

 $\tilde{\alpha} = (1, -1, -5)$ $\tilde{\mu} = (1, 1/2, 2)$ N = (500, 500, 50)

Addition of just a few particles of a 3rd type triggers phase separation in an otherwise homogeneous mixture (cf. first movie)

$$\sum_{i} \mu_{i} \alpha_{i} \rho_{0i} < 0$$

Beyond binary mixtures: phase separation in highly polydisperse mixtures

• Randomly-generated mixtures with 20 different species

homogeneous

phase-separating

Beyond binary mixtures: phase separation in highly polydisperse mixtures

• Randomly-generated mixtures with 20 different species

Instability condition:

$$\sum_{i} \mu_i \alpha_i \rho_{0i} < 0$$

All linearly unstable mixtures undergo phase separation, but some linearly stable mixtures too → nucleation-and-growth mechanism?

Summary II:

- Theory for arbitrary mixtures (N species) of chemically-interacting particles shows wide variety of phase separation phenomena
- Linked to active, nonreciprocal nature of the interactions
- Minimal model applicable to catalytic enzymes (metabolon formation), heterogeneous populations of cells and bacteria (morphogenesis, migration), catalytic phoretic colloids (self-assembly of active materials)

[Agudo-Canalejo, J., & Golestanian, R. (2019). Active phase separation in mixtures of chemically interacting particles. *Physical Review Letters*, *123*, 018101.]

